Abstract: Traditional k-means clustering is widely used to analyze regional and temporal variations in time series data, such as sea levels. However, its accuracy can be affected by limitations, ...
Rocky high steep slopes are among the most dangerous disaster-causing geological bodies in large-scale engineering projects, like water conservancy and hydropower projects, railway tunnels, and metal ...
Abstract: This paper proposes an improved K-means clustering algorithm based on density-weighted Canopy to address the efficiency bottlenecks and clustering accuracy issues commonly encountered by ...
To pick a bottle of wine can often feel like roulette, especially when wine terms like “malolactic fermentation” and “carbonic maceration” are involved. However, if you understand a few key ...
ABSTRACT: Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of ...
ABSTRACT: Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of ...
Objectives To analyse variance in accelerometer-based physical activity (PA) measures in patients with type 2 diabetes, identify the most distinctive PA measures and classify patients into different ...
This project consists in the implementation of the K-Means and Mini-Batch K-Means clustering algorithms. This is not to be considered as the final and most efficient algorithm implementation as the ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results